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Investigations on the stability of viscous flows were performed in [1-3] on the basis 
of the theory of free interaction. A theory with free interaction is used in [4] to inves- 
tigate nonstationary hypersonic viscous gas flows with an entropy layer, A dispersion 
relation is derived, the role of the entropy layer in the nature of nonstationary perturba- 
tion propagation in the boundary layer is clarified in the case when the frequency and wave- 
number take on purely real values. 

The investigation formulated in [4] is continued in this paper, when the wavenumber and 
frequency can take on complex values also. 

Let us consider the nonstationary free interaction of a boundary layer with an external 
hypersonic stream having an entropy layer. Following [5-8], we can write the system of 
asymptotic equations in the form 

aulat§ =--aplaxH-a~u/ag2~ (i) 
aulax+ o~ag = O, aplag ~ O~ 

if we use the similarity transformation indicated in [4], where x, y are Cartesian coordi- 
nates, u, v are the velocity-vector components, p is the pressure, and t is the time. Here 
both the independent variables and the desired flow parameters are taken in a dimensionless 
system of units. 

The boundary conditions for the problem (i) are: 

u = v =  0, ~r. y = 0 ;  (2) 

u - ~ y ~ -  A(%x) ~ r  g - +  oo; (3) 

p = - a A l a x - -  Nap~am, (4) 

where  N i s  t h e  s i m i l a r i t y  p a r a m e t e r  c h a r a c t e r i z i n g  t h e  r o l e  o f  t h e  e n t r o p y  l a y e r  i n  t h e  i n t e r -  
a c t i o n  p r o c e s s  [ 8 ] .  The b o u n d a r y  c o n d i t i o n s  u p s t r e a m  a r e  n o t  f o r m u l a t e d  h e r e  s i n c e  t h e  
p e r t u r b e d  f l o w  domain ,  s e p a r a t e d  f rom i t  by t h e  c h a r a c t e r i s t i c  x = c o n s t ,  can  p r e c e d e  t h e  g a s  
m o t i o n  u n d e r  c o n s i d e r a t i o n .  

As i s  c u s t o m a r y  i n  s t a b i l i t y  t h e o r y ,  t h e  s o l u t i o n  d e s c r i b i n g  t h e  f r e e  v i s c o u s  f l u i d  o s c i l -  
l a t i o n s  is represented in the form 

p = a e  ~ '+~=,  u = y -- ae  et+l~" o](y)/ay~ v = ake  ~'+~* / ( y )~  

where a is the perturbation amplitude. Linearizing with respect to the perturbation amplitude 
reduces the problem (1)-(4) to the form 

d3/ldy3- - (m H- kg)d/ldg -Jr- k] q- k ---- 0,: 

/(0) = ]'(0) ---- O~ d]/dg - ~  ( l  + N k ) / k  for g -~ oo,  

The frequency ~ and wavenumber k are related by the dispersion relationship 

I kTtIs 

(5) 

(6) 
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Ai(z) is the Airy function of the complex variable z = ~/k 2/~ + kl/3y. 

The problem (5), (6) differs from the problem solved in [7] by the factor i/(i + kN) in 
the dispersion relation (6). 

As NIk I + 0 the problem (5), (6) goes over into the problem of a nonstationary boundary 
layer interacting freely with an external supersonic flow. For the latter it is shown in [i] 
that the free interaction of internal waves being propagated in a boundary layer is stable. 

As NIk I § ~ the right side of the dispersion relationship (6) has the form--kl/3/N. 

As in [2]' certain properties of the solution can be indicated at once that permit a 
judgment about the stability of the motion under consideration in problems (5), (6) with 

right side-kl/3/N in the dispersion relationship (6). 

Firstly, a denumerable set of roots located in the vicinity of the negative real semi- 

axis corresponds to each given k (or ~) in the complex plane g = ~/k 2/3. Secondly, out of 

all the roots with pure imaginary values of kthere aremodes forwhich the real part of u can 
take on both negative and positive values. All the roots with imaginary values of k are 
found by a simple conversion of the analogous solutions from the theory of free interaction 

of a boundary layer with an incompressible fluid flow near a plate [i], when the quantity 

Tik 4/3 is in the right side of the dispersion relationship. The conversion formulas have the 
form 

I k 2 ]  = lkl[~N 3, co~ = COl(IkllN) ~, 

where the values IkiI, ml are taken from [l]. 

When the real part of m equals zero, Tollmien--Schlichting traveling waves then originate, 
in which neutral fluid oscillations occur with constant amplitude in the time. 

If the real part of the frequency is divided by (NIkl) I/2, while the absolute value of 

the wave number is divided by (NIkl) s/4, and a dependence of the reduced frequency on the 

reduced wavenumber is constructed, then all the dependences of the real part of the frequency 
on the absolute value of the wave number shrink to one curve (Fig. l) independently of the 
value of N. 

According to calculations, the number corresponding to the neutral oscillations is 

Ik, l = 1.005~N 3 (Fig. 2, solid line). The dashed line in Fig. 2 corresponds to the value 

Nlk I = i. The theory elucidated above is invalid below this curve. The vertical dashed line 
separates those values of N (to the left of the dashed line) for which there are no neutral 
oscillators. 

All the perturbations with wave numbers above the values of the dashed curve will be un- 
stable, while those below will be stable. In this paper, the continuous passage from stable 
to unstable perturbations is not constructed for values of N less than N = 0.995 (the inter- 
section of the vertical dashed line with the solid curve). But it can be said that the growth 
of the number N (the magnitude of the damping) first results in a loss of the stability of the 

Re~/INlk lg/~ 
1 r - - ~ - - - - d ; .  "~ . . . . . .  

o I 

Fig. 1 

--- i s 

! 2 N 

Fig. 2 

378 



longer wavelength perturbations, and then the shortwave perturbations. The latter is in 
qualitative agreement with the data of an experimental investigation of the influence of the 
bluntness of a body leading edge on the stability of boundary layer flow with an external 
supersonic stream. The state in investigations of perturbation development processes at 
supersonic velonities, and in particular, the role of body leading edge bluntness in the loss 
of flow stability in the boundary layer, is examined in detail in [9]. 

The author is grateful to O. S. Ryzhov for valuable remarks made during work on the 
paper. 
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HEAT AND MOMENTUM TRANSFER IN A TURBULENT BOUNDARY 

LAYER ON A CURVED SURFACE 

N. A. Dvornikhov and V. I. Terekhov UDC 532.526.2 

It is known [i-ii] that the presence of relatively small streamwise curvature can have 
significant effect on turbulent heat and mass transfer and skin friction. Here the considera- 
tion of only the deformation of boundary layer, characterized by the ratio of boundary layer 
thickness to radius of curvature ~/R, leads to an appreciably lower effect of curvature on 
skin friction and heat transfer [2, 12] when compared to experiment. Prandtl [i] was one of 
the first to show the similarity between the effects of buoyant forces in stratified fluid 
and streamline curvature in boundary layer. He used mixing length hypothesis to suggest the 
following relation for turbulent skin friction: T/To = #i-- 0.5Ri. The Richardsonnumber used 
here as the parameter differed from its usual form for stratified fluid by the replacement of 
acceleration of gravity by centripetal acceleration. However experimental verification of 
Prandtl's hypotheses showed [8] that the observed effect is an order higher than that given 
by theory. Empirical relations between mixing length and boundary layer parameters and stream- 
line curvature were used to study this problem [2-7]. The basis for these methods is the 
analysis of Monin and Obukhov for the computation of temperature-stratified atmospheric 
boundary layers. Thus, it was suggested in [2] to use different relations for modified mixing 
length, in particular a linear relation 

I/f0 = I -- ~R~, (0. i) 
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